Sustainable Nanotechnology Conference 2015

Fate of Fullerenes (C₆₀) during Peracetic Acid (PAA) Post Disinfection of Treated Alum Enhanced Combined Sewer Overflow (CSO) Primary Treatment

HAITHAM ELNAKAR & MOHAMED GAMAL EL-DIN

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
UNIVERSITY OF ALBERTA
MARCH 9, 2015

- 1. Introduction
- 2. Project Objectives
- 3. Selection of Unit Processes
- 4. Results and Discussion
- 5. Work Currently in Progress

1. Introduction

- 2. Project Objectives
- 3. Selection of Unit Processes
- 4. Results and Discussion
- 5. Work Currently in Progress

Combined Sewer Overflow System

Emerging Contaminants "small IS DIFFERENT"

"existing regulatory approaches and risk management strategies are appropriate for the challenges presented by nanomaterials," however, it recommended that more investment be made in strategic risk assessment research.

Council of Canadian Academies Conseil des académies canadiennes

Council of Canadian Academics, 2008, "Small is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale"

Toxicity of Fullerenes C₆₀

> Solvation Method

(Solvent Exchange, Ultra-Sonication, Long Stirring)

> Surface Modification

(Adsorption of other Materials)

> Functionalization or Derivatization

(Fullerol, Oxo-deravatives)

- 1. Introduction
- 2. Selection of Unit Processes
- 3. Project Objectives
- 4. Results and Discussion
- 5. Work Currently in Progress

Selection of Unit Processes

Enhanced Primary Treatment (Settling + Disinfection)

➤ Coagulation/Flocculation/Sedimentation:

Destabilization of colloidal impurities- Transferring small particles in to large aggregates – Adsorption of dissolved organic materials into the aggregates- Removal of aggregates by sedimentation

Disinfection:

Kill/ Inactivate harmful organisms (bacteria and viruses) and control/remove the odour precursors

Hypothesis

Combinations of oxidants and coagulants will transform and mineralize the target pollutants and result in the reduction or elimination of their toxicity.

PAA Study

- 1. Introduction
- 2. Selection of Unit Processes
- 3. Project Objectives
- 4. Results and Discussion
- 5. Work Currently in Progress

Overall Objectives

- Enhancement of primary sedimentation process for the treatment of CSOs
- Assessment of the environmental impacts and mitigation measures of some NMs of emerging concern

Short-Term Objectives

- Selection of the optimum operating conditions of the most effective chemicals and processes for CSO treatment
- Investigation of the role of using dual disinfection system
- Understanding the fundamentals of the selected processes in handling NPs
- Assessment of the effects selected coagulants and oxidants on the transformation of selected NPs.
- Investigation of the removal efficiency of the regulated parameters such as chemical oxygen demand (COD), nitrogen, phosphorus, *E. coli*, etc. with the increase of NMs.
- Toxicity reduction

Long-Term Objectives

- Scientific foundation for the sustainable and integrated management of CSO
- Assisting decision-makers to adopt sustainable development strategies based on the simulation of actual conditions and the predictions of the impact of NPs on the environment
- Protection of environment and human health

- 1. Introduction
- 2. Selection of Unit Processes
- 3. Project Objectives
- 4. Results and Discussion
- 5. Work Currently in Progress

Sub Project#1: Fate of fullerenes (C_{60}) during peracetic acid (PAA) post disinfection of treated alum-enhanced combined sewer overflow (CSO) primary treatment

Preparation of nC60

≻Solvent Exchange (Toluene)

CFS- Flushes Role

CFS- Flushes Role

CFS- Flushes Role

PAA Post Disinfection

PAA Post Disinfection

% of Primary Influent	50%P+ 50% SSW
pН	7
Avg. Effluent TSS (mg/L)	21.5
Avg. Effluent COD (mg/L)	33

PAA Post Disinfection

- 1. Introduction
- 2. Selection of Unit Processes
- 3. Project Objectives
- 4. Results and Discussion
- 5. Work Currently in Progress

Work Currently in Progress (May 2015)

- 1. Simultaneous Removal of E.coli and C_{60}
- 2. Repeat Experiments at 5° Celsius

3. Kinetics

4. Toxicity Studies

